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ABSTRACT 

A heated rotating cavity with an axial throughflow of cooling air is used as a model for the flow in the 
cylindrical cavities between adjacent discs of a high-pressure gas-turbine compressor. In an engine the flow 
is expected to be turbulent, the limitations of this laminar study are fully realised but it is considered an 
essential step to understand the fundamental nature of the flow. The three-dimensional, time-dependent 
governing equations are solved using a code based on the finite volume technique and a multigrid algorithm. 
The computed flow structure shows that flow enters the cavity in one or more radial arms and then forms 
regions of cyclonic and anticyclonic circulation. This basic flow structure is consistent with existing 
experimental evidence obtained from flow visualization. The flow structure also undergoes cyclic changes 
with time. For example, a single radial arm, and pair of recirculation regions can commute to two radial 
arms and two pairs of recirculation regions and then revert back to one. The flow structure inside the 
cavity is found to be heavily influenced by the radial distribution of surface temperature imposed on the 
discs. As the radial location of the maximum disc temperature moves radially outward, this appears to 
increase the number of radial arms and pairs of recirculation regions (from one to three for the distributions 
considered here). If the peripheral shroud is also heated there appear to be many radial arms which 
exchange fluid with a strong cyclonic flow adjacent to the shroud. One surface temperature distribution 
is studied in detail and profiles of the relative tangential and radial velocities are presented. The disc heat 
transfer is also found to be influenced by the disc surface temperature distribution. It is also found that 
the computed Nusselt numbers are in reasonable accord over most of the disc surface with a correlation 
found from previous experimental measurements. 

KEY WORDS Axial throughflow Multigrid Rotating flow Rotationally-induced buoyancy Three-dimensional and 
time-dependent numerical computation 
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INTRODUCTION 

In modern aero-engine gas turbines, it is common practice to supply cooling air to the turbine 
discs and blades. This cooling air is bled from successive compressor stages and then flows 
axially between the bores of adjacent discs in the high-pressure compressor. A schematic diagram 
showing a cross-sectional view through a typical high-pressure compressor and the associated 
cooling flows is shown in Figure 1. Some of the central axial throughflow enters the cavities 
formed between the adjacent discs and a parasitic temperature rise occurs in the throughflow 
air as a result of the convective heat transfer. A knowledge of the heat transfer in these compressor 
cavities is important for two reasons. First, the engine designer obviously needs to know the 
temperature of the turbine cooling air, and secondly to calculate the disc temperatures in order 
to predict the stress and radial growth. 

A simplified version of the above comprises a cylindrical cavity (formed by two discs of outer 
radius, b and a peripheral shroud of axial width, s) which rotates with an angular velocity, Ω. 
The central throughflow enters the cavity, with a bulk average velocity in the axial direction of 
W, through a hole of radius a, in the upstream disc and leaves via an identical hole in the 
downstream disc. An experimental study of the flow structure and heat transfer for the case 
when the discs are heated was reported by Farthing et al.1,2. The essential features of the observed 
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flow structure are illustrated in Figure 2. When the discs are unheated, the flow structure is 
similar to that shown in Figure 2a. In this case the central jet passing through the cavity (the 
throughflow) generates a toroidal vortex. In the absence of various modes of isothermal vortex 
breakdown (see Farthing et al.), the flow is two-dimensional and there is virtually no penetration 
of the throughflow into the cavity itself. 

When the discs are heated, there is a dramatic change in the flow structure: it becomes 
three-dimensional and time-dependent. Some of the central throughflow now enters the cavity 
as a result of buoyancy effects which are themselves induced by rotation. The following description 
is based on observations of the flow in a cavity with a surface temperature distribution that 
decreases with radius. It was found that this gave a clearly defined flow pattern; for a surface 
temperature distribution that increases with radius, flow still enters the cavity but the features 
of the flow cannot be clearly identified. A schematic of the heated flow structure, given in the 
r-θ plane as this best illustrates the relevant features, is shown in Figure 2b. In the region 
between the two discs, the flow now comprises: a radial arm and a pair of circulation regions. 
Multiples of this basic flow structure have also been observed, i.e. two radial arms and two 
pairs of circulations etc. This entire flow rotates at an average angular velocity ω, which is found 
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to vary with gap ratio, Rossby number (W/Ωa) and thermal conditions, but typically 
0.9 < ω/Ω < 1. Fluid in the radial arm enters the cavity, bifurcates at the shroud and forms the 
regions of circulation. The cyclonic region rotates in the same direction as the discs; the 
anticyclonic region, in the opposite direction. Under most conditions the regions of circulation 
do not merge but are observed to be separated by a region which fluid does not enter. Because 
the circulations rotate in opposite directions they are at different pressures; and just as their 
meteorological equivalents, the cyclonic region has a lower pressure than the anticyclonic region. 
The consequence of this is best demonstrated by considering the linear tangential momentum 
equation in a rotating frame of reference. For steady, incompressible and inviscid flow, this 
simplifies to: 

2Ωu = –1/ρr(∂p/∂θ) (1) 
where r and θ are the respective radial and tangential coordinates, p is the reduced static pressure, 
ρ is the density and u is the radial velocity. 

It is evident from inspection of (1) that there can only be a radial flow (in this case u) in the 
inviscid region between the discs if there is a circumferential variation of pressure: which of 
course is provided by a cyclone and anticyclone pair. Inspection of Figure 2b also reveals that, 
in the radial arm, ∂p/∂θ < 0 and from (1), u > 0; so radial outflow occurs. Conversely, away 
from the radial arm and between a pair of circulation regions, ∂p/∂θ > 0 and so radial inflow 
may be expected to occur. 

Farthing et al.1 also correlated the heat transfer from the discs and found this to depend on 
both the Reynolds number of the axial throughflow, Rez, (Rez = 2aW/v where v is the kinematic 
viscosity) and the rotational Grashof number, Gr (Gr = Ω2rβ∆TL3/v2 where β∆T is a buoyancy 
parameter). One particularly significant finding was that the appropriate characteristic length 
for the Nusselt and Grashof numbers, L, was the distance measured radially inward from the 
shroud; implying that a boundary layer flows in this direction. They also correlated the measured 
local disc surface Nusselt numbers, Nu, with the local Grashof number, Gr, and found that 
Nu Gr1/4 a relation usually associated with laminar flow in natural convection. 

Although the experimental work has been relatively successful, there has to date been no 
successful numerical modelling of this complex flow. It is this topic which forms the subject of 
this paper. It is also hoped that the work presented will also be of use as a 'test case' for other 
CFD codes which model three-dimensional, time-dependent flows involving buoyancy and 
rotation. A full study involving the various effects of rotational speed, flow rate etc. has not 
been considered here and it is hoped this will be reported in a future paper. The governing 
equations of conservation of mass, momentum and energy are solved using a finite volume 
technique and a multigrid algorithm; these details will be presented in the next two sections. 
The results of the computations are presented and some comparisons with flow visualization 
are made later. 

GOVERNING EQUATIONS 

Equations of motion 
A schematic diagram of the numerical model and boundary conditions for this flow 

configuration is shown in Figure 3. At radial, tangential and axial coordinates, r, θ, z, the fluid 
has radial, tangential and axial components of velocity (relative to a coordinate system rotating 
at the same speed as the cavity) u, v and w, respectively. The absolute static temperature, static 
pressure, specific heat at constant pressure, thermal conductivity and dynamic viscosity of this 
fluid are T, P, Cp, k and μ, respectively. 

For the flow considered here, the Eckert number, E = Ω2r2/2Cp∆T (where ∆T is the 
temperature difference between the incoming air and the maximum value on the disc surface), 
is small (E < 4 x 10-5). So compressive heating in the energy equation will be neglected. Relative 
to the discs, the flow structure of the cavity is slow moving, because ω Ω, so the terms in the 
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Table I Diffusion coefficients for the generalized 
transport equation (2) 

Φ 

w 
u 
V 
T 

ΓΦ,z 

2μ + λ 
μ 
μ 
k/Cp 

ΓΦ,r 

μ 
2μ + λ 
μ 
k/Cp 

ΓΦ,θ 

μ 
μ 
2μ + λ 
k/Cp 

energy equation associated with viscous dissipation can also be ignored. The variation of density 
with pressure is calculated using the equation of state, ρ = P/RT, where R is the characteristic 
gas constant. 

The time-dependent equations describing the conservation of momentum and energy in three' 
dimensions for a compressible fluid, with variable dynamic viscosity, in a rotating coordinate 
system, are stated in a common form for the general transport variable Φ, by: 

(2) 
The diffusion coefficients, ΓΦ for (2) are given in Table 1, where λ = — 2μ/3, and the subscripts 
z, r and θ denote the respective components in the axial, radial and tangential directions. 

The source terms, SΦ when Φ = w, u, v, T are as follows: 

The continuity equation for time-dependent flow of a compressible fluid is given by: 
(3) 
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Initial and boundary conditions 
At time t = 0, the initial conditions for the variables u, v, w, p, T and ρ inside the cavity (i.e., 

for 0 r b, 0 < θ 2π and 0 z s) are: 
u = v = w = 0 p= 1.03 x 105 Pa T = Ti ρ = P/RTi 

Various tests were carried out to verify that the solutions were independent of the chosen initial 
conditions (notably different initial tangential velocity distributions). The results presented in 
this paper are considered to be virtually independent of the initial conditions. 

For t > 0, the disc and shroud surface temperatures are specified (the precise form will be 
stated as appropriate later in the paper) and on these boundaries u = v = w = 0. At the cavity 
inlet (i.e., z = 0, r a and for 0 < θ 2π) T = Ti, u = v = 0; and either w = (Rezv/2a) = W (a 
constant velocity profile) or w = 2W(1 — (r/a)2) (a parabolic velocity profile). At the cavity 
outlet (z = s, r a and for 0 < θ 2π), ∂Φ/∂z = 0, where Φ = u, v, w or T. 

Experimental evidence of Farthing et al.2 suggests that for the Rossby number considered 
here (Ro = 8) the flow at the cavity exit is parabolic (i.e. not influenced by the downstream flow 
conditions). For lower values of Rossby number Ro ≈ 1, the experimental evidence shows that 
the exit flow is not parabolic; there is flow reversal and the numerical predictions of Tucker3 

(which are not presented here) show this. This would suggest that the chosen boundary conditions 
are satisfactory. However, further tests were performed to check the sensitivity of solutions to 
the downstream boundary conditions. These involved selectively changing different differential 
boundary conditions at the cavity outlet to Dirichlet (matching those at the cavity inlet). Also, 
different pressure distributions at the cavity outlet were tested. The pressure distribution was 
assumed to be either uniform and at atmospheric pressure or a parabolic distribution (based 
on the swirl velocity at the cavity outlet). These tests revealed the solutions were insensitive to 
the cavity exit boundary conditions. 

Numerical modelling of the flow visualization results 
The governing equation for the transport of a species, of mass concentration, C is: 

(4) 
Equation (4) was solved using a time-step of ∆t = 1 sec and with the following initial condition 
at t = 0: 

for 0 r b; 0 z/s 1;0<θ 2π, C = 0 and the following boundary conditions for t > 0: 
(i) for the cavity inlet (z = 0, r a and 0 < θ 2π), C = 100; 

(ii) for the cavity outlet (z = s, r a and 0 < θ 2π), ∂C/∂n = 0, where n is the appropriate 
outward normal; 

(iii) for the disc surfaces and shroud (z = 0, a < r b and 0 < θ 2π; z = s, a < r b and 
0 < θ 2π and 0 z s, r = b and 0 < θ 2π), ∂C/∂n = 0, where n is the appropriate 
normal. 

SOLUTION METHOD 

Discretization scheme 
The equations of motion are discretized using the control volume formulation described 

by Patankar4, and an implicit time scheme was used. The grids used in the momentum 
equations are staggered as shown in Figure 4, and the computational advantages of this are 
discussed in the book by Patankar. The hybrid scheme of Spalding5 is used to interpolate 
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variables from the main grid points onto the finite control volume faces. The pressure field over 
the region is obtained from the continuity equation using the SIMPLEC method of Van Doormal 
and Raithby6. 

The choice of coordinate system is found to have a significant influence on the solutions. 
Relative to a stationary coordinate system, the flow has a large tangential velocity since v ≈ Ωr. 
The control-volume Peclet number (for the momentum equation, this is equivalent to a Reynolds 
number defined using local velocity, grid size and kinematic viscosity) will usually exceed a value 
of 2, at which a second-order central difference scheme becomes unstable, and the hybrid scheme 
used switches over to the more stable upwind difference scheme. However, this has two 
disadvantages: the accuracy is limited to first-order and, the increased stability can damp the 
tangential variations of variables leading to an axisymmetric solution. The Peclet number can 
be reduced by either reducing the grid size or adopting a coordinate system rotating at the 
cavity speed, Ω. Since the former requires more overall computing resources, the latter choice 
is preferable, and is used for all the results discussed here. 

The dominant terms in the radial momentum equation are the radial pressure gradient and 
the centrifugal force term, which involves tangential velocity. This leads to strong coupling which 
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can create difficulties with convergence. Gosman et a.l7 proposed use of the term: 
a0 ρ|v + a1Ωr|(uold - unew)/r, where a0 and a1 are the Gosman relaxation terms and the subscripts 
'old' and 'new' denote values at the previous and current iterations. This is added to the source 
term in the radial momentum equation to improve convergence, and in its original formulation 
a1 = 1. Use of these Gosman relaxation terms was found by Vaughan8 to be highly effective in 
improving the speed of convergence when solving axisymmetric rotating flows. This use is 
continued in the current three-dimensional predictions. 

The multigrid algorithm 
The speed, with which the discretized equations can be solved, is increased by the use of a 

non-linear multigrid algorithm. The axisymmetric version is discussed in detail by Vaughan et 
al.9. A three-dimensional version is used here which includes some minor improvements, and 
so a brief discussion is considered appropriate. 

A differential equation in the discretized form [A][Φ] = [S], is represented on a fine mesh, 
denoted by use of the subscript m. If is the approximate solution to Φm and cm, the correction 
to complete the solution on the fine mesh then: 

[Am][( + cm] = Sm (6) 
The residual or deficit D, is defined as: 

[Dm] = [Sm]-[Am][ ] (7) 
Combining (6) and (7) gives, 

[Am][' + cm] = [Dm] + [Am][ ] (8) 
For a more coarse mesh, denoted by the subscript m + 1, (8) is rewritten as: 

[Am+1][( 1 + cm+1)] = [ + 1] + [Am+1][( +1)] (9) 
where the superscript f indicates that the value originates from the finer mesh. This process is 
in fact referred to as restriction; a weighted operator is used to transpose the variables from the 
fine grid to the coarse grid. For the main (as opposed to staggered) grid variables, which are 
temperature and pressure the number of points used in the restriction for a three-dimensional 
problem is 3np where np is the number of planes in which the grid is made more coarse (i.e., a 
27 point restriction is used when the grid is coarsened in all three planes). For the staggered 
grid variables (i.e. the velocity components) the number of points used in the restriction is 2(3np- l). 

Equation (9) can be represented on successively coarser meshes. In the work discussed here 
three meshes were used in a so-called V-cycle. For a V-cycle, (9) is solved for corrections cm 
and cm+1 to the variables, represented here by Φ, on successively coarser grids. Once the coarsest 
grid has been reached the corrections are interpolated onto the next finest grid and so on. In 
this way, two solutions to (9) are obtained at each grid level. 

Grid coarsening, on the m + 1 grid level for example, is normally achieved by missing out 
alternate main grid nodes on grid level m, in the axial, radial and tangential directions. But for 
the work presented here, grid coarsening for each plane was controlled independently. This 
feature allows the aspect ratio of the coarse grids to be controlled. The three-dimensional, 
time-dependent problems which are the main subject of this paper use considerable CPU time 
(for ∆t = 0.05 sec, approximately 900 sec per time-step on a Solbourne 5E/905-128 mainframe 
and about 130 sec per time-step when using a Cray XMP/48). Consequently, it was not possible 
to investigate the effect of using different aspect ratios for the restricted (coarse) grids in 
three-dimensional geometries. Some preliminary investigations were, however, applied to 
axisymmetric problems of the flow between a rotating and stationary disc (rotor-stator) 
problems. The results from this work suggest that the choice of coarse grid aspect ratio can 
effect a 10% saving in CPU time. 
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The multigrid algorithm employed three grid levels in the axial, radial and circumferential 
directions. On the finest and intermediate grid levels, 2 relaxation sweeps each involving 6 pressure 
correction sweeps were used. For the coarsest grid, 3 relaxation sweeps each involving 6 pressure 
correction sweeps were used. 

Convergence criteria 
The parameters used to monitor convergence were the normalized residuals and also 

the root-mean square (rms) change in all the variables. The latter is defined as, 
rmsΦ = (Σ (Φnew

 — Φold)2/[Σ (Φnew)2])1/2> where the summation applies over the entire solution 
domain. At the end of a time-step, the value of rmsΦ was below 5 x 10 - 5 (but, typically an 
order of magnitude smaller than this). The residuals for the axial, radial and tangential momentum 
equations are normalized using where uref is the maximum radial velocity at r = b/2 
and z = s/2. The residual of the pressure correction equation is made dimensionless by dividing 
by the new mass flow rate of fluid actually entering the cavity (typically 1 to 2% of the throughfiow 
flow rate), mcav. For the energy equation, the product of flow rate entering the cavity and the 
maximum temperature difference between the cavity walls and the incoming air is used to 
normalize the residuals. These (uref and mcav) normalizing parameters are chosen in preference 
to the perhaps more obvious choice of bulk axial velocity W, and total throughflow rate m, 
since they are considered to be more appropriate. Use of the latter can bring about a relaxation 
in the convergence criteria with the result that insufficiently converged solutions can be obtained. 
After 5 sec, the maximum of the normalized residuals for all the equations is less than 2 x 10 -2, 
a typical average value is 0.75 x 10"2. 

RESULTS AND DISCUSSION 

Test case details 
The test case to be discussed used a 17 x 21 x 40 grid (in the axial, radial and tangential 

directions, respectively) with a0 = a1 = 2 and a time-step of ∆t = 0.05 sec. Although relatively 
coarse, the grid was chosen due to limitations in CPU time and storage requirement. However, 
solutions made with a 33 x 33 x 60 grid on the CRAY XMP/48 and also a second-order 
convective term treatment suggest reasonable grid-independence of most solutions presented 
here. The dependence of the solutions on the time-step length was investigated and it was found 
that the results became time-step independent for ∆t < 0.2 sec. 

The results focus on a single geometry: a = 0.0108 m, b = 0.108 m and s = 0.0288 m, giving 
a/b = 0.1 and G = s/b = 0.267 (see Figure 3). These dimensions were chosen as they correspond 
to the apparatus used in most of the experimental flow visualization work by Farthing et al.2. 
The numerical results were obtained for a constant value of the axial and rotational Reynolds 
numbers: Rez = 2180 and ReΦ = 1.3 x 104, again corresponding to a condition where there is 
available experimental evidence. The emphasis of this paper is to report on the development of 
a technique, and consequently a systematic investigation of the effects of axial and rotational 
Reynolds numbers will not be presented here (it is hoped to address these topics in a future 
paper). Both discs are heated with the same axisymmetric surface temperature distribution, and 
four different temperature distributions were investigated. These are illustrated in Figure 5, 
frames (a), (b), (c) and (d), and will be referred to as temperature distributions A, B, C, and D, 
respectively. Temperature distribution A, decreases with radius and is defined by: 

TS = A0 + A1r/b (10) 
where A0 = 382 K and A1 = —89 K; at the shroud the surface temperature is 293 K. The other 
temperature distributions are defined by two such similar expressions blended by a smooth curve 
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in the region where they intersect. The coefficients for (10), and the radial extent for which these 
apply, for each temperature distribution are listed in Table 2. 

It is believed that the disc surface temperature distributions used in the experimental flow 
visualization work of Farthing et al.2, were similar to distributions A and B. At inlet to the 
cavity the air has a temperature of Ti = 293 K. 

Validation tests cases 
Several test cases were chosen to validate different aspects of the code. Full details of this 

work are available in Tucker3, so only a brief outline of it is given here. Three-dimensional, 
buoyancy-induced, steady state solutions in a stationary cylinder were validated by comparison 
with numerical predictions by Bontoux et al.10 and experimental measurements of Schiroky and 
Rosenberger11. Excellent (usually better than 1 %) agreement was obtained between the numerical 
predictions of velocity distributions. Time-dependent, 3-D, buoyancy-induced solutions were 
obtained for the flow investigated by Castrejon and Spalding12. Although these authors did not 
publish any quantitative data, acceptable agreement was obtained between predictions of the 
flow structure showing the time-dependent growth of the buoyant plume. For the above two 
test cases, the flows are in a non-rotating container. The results of Hide13 and Hignett et al.14 

Table 2 Coefficients of (10) describing the four disc surface temperature distributions investigated 

Temperature 
distribution 

A 
B 
C 
D 

Inner curve 

none 
0.1 r/b 0.263 
0.1 r/b 0.492 
0.1 r/b 0.768 

A0 
(K) 

277 
298 
300 

A1 
(K) 

309 
122 
75 

Outer curve 

0.1 r/b 1 
0.263 r/b 1 
0.492 r/b 1 
0.768 < r/b 1 

A0 
(K) 

382 
382 
420 
573 

(K) 

-89 
-89 

-127 
-280 
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were used to validate a 3-D test case involving the combined effects of rotation, buoyancy and 
time-dependence. No velocity measurements were published by Hide, but good qualitative 
agreement was obtained; in terms of a non-dimensional characterizing parameter the current 
program was able to predict the observed flow pattern. White15 believes that at t = 250 sec, this 
particular flow should reach a cyclic form of time dependence. But Hignett et al. published their 
predicted and measured velocity data for t = 1000 sec. Due to limitations in computing budget 
it was not possible to obtain solutions at this time, and since one objective of their study was 
to study the vacillations which occur over this time scale it was also considered unnecessary. 
Comparisons between the tangential velocity distributions and wave number obtained from the 
two sets of numerical results at t = 250 sec and 1000 sec, and experimental measurements gave 
generally good agreement. In some cases the current predictions agreed more favourably with 
the experimental measurements of Hignet et al. than their own predictions. 

The basic flow structure 
The essential features of the flow structure at t = 31.5 and 42 sec for disc surface temperature 

distribution A are illustrated in Figure 6. On the left-side of the figure are the computed velocity 
vectors at z/s = 0.5 obtained from solutions with ∆t = 0.05 sec, and on the right-side are 
schematic diagrams of the flow. The cavity is rotating in an anticlockwise sense. 

Although not shown here, the basic flow structure becomes established at t = 6 sec and for 
times greater than this the flow exhibits a cyclic form of time-dependence, i.e., changes in the 
flow structure occur as time progresses and these changes are repeated in a cycle. The vector 
plot at t = 31.5 sec, shows flow to enter the cavity in a radial arm (seen in approximately the 
3 o'clock position). The region of flow above the radial arm rotates with the sense of rotation 
of the cavity. This is a cyclonic region, there being another cyclonic region at approximately 7 
o'clock. The region below the radial arm (at approximately 5 o'clock) rotates against the cavity; 
this is the anticyclonic region. Opposite the radial arm and between the two cyclonic regions, 
is a region showing characteristics of the separation zone, which forms from an earlier anticyclonic 
region. At t = 42 sec (frame (b)), there are now two radial arms (at 2 o'clock and 8 o'clock), 
two regions of cyclonic flow and two smaller regions of anticyclonic flow. Although not shown 
here, where there are regions of cyclonic flow the fluid moves axially away from the disc surface. 
For regions of anticyclonic flow, fluid moves axially (or is entrained) towards the disc surface. 
This finding is consistent with the behaviour of surface flows and the analogous meterological 
phenomena. 

The effect of the disc surface temperature distribution on the computed flow structure is shown 
in Figure 7. Frames (a), (b), (c) and (d) show the velocity vectors in the mid-axial plane (z = s/2) 
corresponding to surface temperature distributions A (at r = 60 sec), B (at t = 30.9 sec), C (at 
t = 33 sec) and D (at t = 59 sec), respectively. In all these cases the periphery of the cavity (or 
shroud) is at T = Ti (= 293 K). In frame (e) the shroud is also heated, to the maximum disc 
surface temperature of 353 K this computation was started using the results shown in frame (d) 
for the initial conditions and allowed to run until t = 88.6 sec. As was shown in Figure 6 for 
temperature distribution A, the flow structure changes from one characterized by a single radial 
arm, cyclone, anticyclone and a separation zone to two radial arms, two cyclones and two 
anticyclones and then back again. Analysis of the flow structure has concluded that although 
the flow cycles in this manner, the predominant flow structure is that with the single radial arm; 
this is shown in Figure 7a. For disc surface temperature distribution B, the flow structure always 
has two radial arms, two cyclones, two anticyclones and no separation zone. This flow structure 
is shown in frame (b). A similar (two-armed) flow structure occurs with temperature distribution 
C, there being only a few differences in detail between this and temperature distribution B. 
Shifting the location of the maximum disc surface temperature towards the outer radius, as in 
distribution D, creates a significant difference in the flow structure (see frame (d)). It is now 
difficult to distinguish radial arms, cyclones and anticyclones. There appears to be a strong 
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anticyclonic flow over most of the cavity, three regions of comparatively weak cyclonic flow 
and three weak radial arms. Towards the bore, r/b 0.25, the flow is virtually axisymmetric. 
In frame (e), where the discs are heated with distribution D and the shroud is also heated, the 
flow inside the cavity appears to have broken down into a number of streams. These flow radially 
outward and radially inward, supplying and collecting fluid into and from the boundary layer 
on the heated shroud. Adjacent to the shroud, fluid is moving faster than the cavity—presumably 
as a consequence of its density being reduced by heating and maintaining conservation of angular 
momentum. As in frame (d), near to the bore, the flow becomes almost axisymmetric. 

As previously noted, the flow visualization work of Farthing et al.2 focused on disc surface 
temperature distributions A and B. The numerical results presented here have shown that under 
these conditions the flow may commute from having a single radial arm etc., to a pair of radial 
arms etc. This sensitivity of the flow structure to the imposed surface temperature distribution 
may serve to explain differences in the observed experimental flows, where in some cases there 
would be one radial arm and in others two. It is further worth commenting that Farthing16 

carried out some flow visualization work with a heated shroud and noted the existence of 
'multiple radial arms' which is not at all inconsistent with the flow illustrated in Figure 7e. 

Comparison between numerical predictions and experimental flow visualization 
Much of the experimental evidence of the flow structure has been obtained from flow 

visualization. (Atomized oil particles are injected into the central throughflow and a collimated 
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sheet of Laser light illuminates either an r-θ or r-z plane inside the cavity.) The governing 
equation for the transport of a species is given by (4). The velocities in the convective terms of 
(4), w∂C/∂z etc., were obtained from the predicted velocity field (obtained from solving (2) and 
(3)). It was not possible to obtain precise information on the diffusive properties of the oil 
particles in the air. However, since the motion of the oil particles will be governed by Stokes' 
law, it is considered that setting the diffusion coefficient, Γ, in (4) to zero, should give a good 
description of their motion. 

A comparison between the numerical (with temperature distribution A and Sc = v/Γ = ∞) 
and experimentally observed flow structures is given in Figure 8. The experimental results were 
obtained using a high speed video camera (Kodak Ektapro); the areas of white are where 
atomized smoke particles are illuminated by a collimated sheet of laser light, and the cavity is 
rotating in a clockwise sense. The numerical results simulate the concentration of atomized 
smoke droplets in the cavity at the same time as recorded in the experiment: frame (a) at 1 sec 
from when the smoke first appeared in the cavity, (b) at 3 sec and (c) at 7 sec. The sense of 
rotation is the same as in the experiment, and the grey scale chosen attempts to match that in 
the experimental results. In frame (a) both the numerical and experimental results show the 
radial arm. In frame (b) this bifurcates and begins to form the cyclonic and anticyclonic regions 
which are evident in frame (c). 

The velocity field in the cavity 
The following discussion and graphs of velocity profiles were obtained using disc surface 

temperature distribution B. This was chosen as it is considered to strike a balance between 
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showing the essential features of the flow and simplicity (the flow structure for this distribution 
always has two radial arms and does not commute). Figure 9 shows the circumferential variation 
of radial velocity, u, at z/s = 0.5 and r/b = 0.6 for disc surface temperature distribution B, a 
parabolic inlet velocity profile and at a number of different times (t = 6, 25, 26, 27 and 28 sec). 

The angle, θ, is taken as being positive in an anticlockwise direction from the '3 o'clock 
position'. A negative value of u indicates that the fluid moves radially inward, conversely the 
flow moves radially outward when u > 0. The velocity profile for t = 6 sec is distinctly different 
to the others indicating that at this time the flow is still developing with time and the cyclic 
nature of the flow is not yet established. For t 25 sec, where the flow is cyclic, the curves are 
similar and there is a shift (1 – ω/Ω = 0.01) indicating that there is relative tangential motion 
of the fluid inside the cavity. For the value of Rez considered here (Rez = 2180) the bulk average 
velocity of the central throughflow, W, is 1.5m/sec; the computed radial velocities are shown 
to generally be an order of magnitude lower than this. At r/b = 0.6, radial outflow occupies a 
larger sector than radial inflow (which can also be seen in the velocity vector plots shown in 
Figure 7b). However, the greatest peak velocities occur when the flow moves radially inward. 

The circumferential variation of radial velocity obtained using a uniform velocity distribution 
at inlet, at three axial locations: z/s = 0.02, 0.5 and 0.98 (z/s = 0 corresponds to the upstream 
disc and z/s = 1 the downstream disc) is shown in Figures 10a, b and c, respectively. Each frame 
shows the results at three different radial locations: r/b = 0.2, 0.6 and 0.9 and the plots are 
obtained for t = 30.9 sec. The three diagrams indicate the complex nature of the flow; generally 
a quadrant in any r-θ plane can have both outflow and inflow. The magnitude of the velocities 
is generally greater away from the outer part of the cavity. This presumably occurs due to the 
decrease in cross-sectioual area with decreasing radial coordinate. It is interesting to compare 
the results for z/s = 0.02 and 0.98 equal distances from the upstream and downstream discs, 
respectively. For r/b = 0.6 and 0.9 there is little difference in the results but there are significant 
differences at r/b = 0.2. In particular, where there is radial outflow, the velocities are greater 
adjacent to the downstream disc (at z/s = 0.98)—presumably due to the action of the central 
throughflow itself. When there is radially-inward flow, the velocities at all three axial locations 
for r/b = 0.2 are similar. Further examination reveals that at r/b = 0.2, radial inflow occurs in 
two distinct sectors, at about θ = 0.6π and θ = 1.6π, with the least amount of fluid flowing 
radially inward adjacent to the downstream disc. Comparison between Figure 10b for r/b = 0.6, 
and the results shown in Figure 9 illustrates that the assumed velocity profile at inlet has little 
influence on the flow well into the cavity. Figure 11 shows the axial variation of tangential 
velocity, v, computed using a uniform velocity profile at inlet, at r/b = 0.2, 0.6 and 0.9 for 
different circumferential locations and at t = 30.9 sec. A positive value of v indicates that the 
tangential velocity of the flow exceeds that of the discs, the converse applies when v is negative. 
For r/b = 0.6 and 0.9 the axial variation of tangential velocity is virtually symmetrical about 
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the mid-axial plane but not at r/b = 0.2. There appear to be regions close to each disc where 
there is a relatively large change in v, indicating the existence of boundary layers. Between these 
regions, there is little change in v with axial location. Comparing the results for the different 
circumferential locations shows that there is both cyclonic v > 0 and anticyclonic flow v < 0 at 
the same radial location. 

The axial variations of radial velocity (at t = 30.9 sec and with a uniform inlet velocity profile) 
are shown in Figures 12a, b and c for r/b = 0.2, 0.6 and 0.9, respectively. As was noted for the 
tangential velocity, there is here also a region close to the surface of each disc where the radial 
velocity varies significantly. As also noted in Figure 10, at any radial location there is both radial 
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inflow and outflow and as shown in the velocity vector plots (Figure 7b), these regions are 
separated by regions of cyclonic and anticyclonic flow. For r/b = 0.6 and 0.9 the axial variation 
of radial velocity is virtually symmetrical about the mid-axial plane, this does not occur at 
r/b = 0.2 due to (as noted above) the influence of the central throughflow which appears to 
create some recirculation adjacent to the downstream disc. At r/b = 0.9 the flow is comparatively 
weak which is consistent with experimental observations. The magnitudes of the 
relative-tangential and radial velocities are comparable at r/b = 0.2 (cf. Figures 11a and 12a). 
At r/b = 0.6, the radial velocity exceeds the relative-tangential velocity and at r/b = 0.9 the 
relative-tangential velocity exceeds the radial velocity. 
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Nusselt number distributions 
Figures 13a and b show the radial variation of local Nusselt number, Nu (defined using L = r) 

for disc surface temperature distribution B and at z/s = 0 and z/s = 1 corresponding to the 
upstream and downstream disc faces, respectively. The results are shown for a value of t = 30.9 sec 
and at five different circumferential locations. For r/b > 0.3, the results for each disc are virtually 
identical. For r/b < 0.3 the differences between the upstream and downstream discs are attributed 
to the recirculation effect noted above. There are circumferential variations in the Nusselt number 
but the circumferentially-averaged value decreases with increasing radius. The experimental 
results1 for a similar surface temperature distribution were obtained at larger values of rotational 
and axial Reynolds numbers than these numerical results. But it is encouraging to note that, 
the radial distribution of local Nusselt numbers seen here is consistent with their experimental 
work. 

The effect of disc surface temperature distribution on the computed Nusselt numbers from 
the upstream disc is shown in Figure 14. These results were obtained at the same times as the 
vector plots shown in Figure 7. As the radial location of the maximum disc surface temperature 
moves outward (distributions A to D) the circumferentially-averaged Nusselt number becomes 
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less negative. There is also a damping down of the circumferential variation in Nusselt number, 
presumably because the flow structure itself tends to become more axisymmetric. The heat 
transfer towards the outer radius is always negative, i.e., into the disc. This occurs because the 
disc temperature here is set to the fluid inlet temperature. When the shroud is heated, this 
increases the heat transfer into the disc surface at the outer radius, because the fluid now receives 
additional heat from the shroud. The results shown in frame (c) are for surface temperature 
distribution D, which is similar to that used to obtain a correlation of the heat transfer by 
Farthing et al.1 This is also shown on the graph and in the current nomenclature is given by: 

(11) 
The numerical results in Figure 14c are for r/b 0.8 in reasonable accord with this correlation. 
The discrepancy at r/b > 0.8 is attributed to a difference between the boundary condition assumed 
here for the shroud (at T = Ti) and that in the experiments (adiabatic). 

CONCLUSIONS 

Numerical results are presented in this paper for the heated flow structure in a rotating cavity 
with an axial throughflow of cooling air. The results are shown for ReΦ = 1.3 x 104, Rez = 2180 
and five different surface temperature distributions are investigated. The time-dependent 
three-dimensional form of the equations of continuity, momentum and energy are solved in a 
coordinate system rotating at the angular speed of the cavity. Laminar flow is considered and 
the governing equations are solved using a finite volume formulation and a multigrid technique. 

The flow structure is three-dimensional and is seen to exhibit a cyclic form of time dependence. 
The predicted flow structure is consistent with experimental results obtained using 
laser-illuminated flow visualization. Flow is seen to enter the cavity in radial arms, flanked by 
regions of cyclonic and anticyclonic circulation. Where there are regions of cyclonic flow, fluid 
moves axially away from the disc surface, for regions of anticyclonic flow, the converse applies. 
The separation region reported in the experimental work, although present is not a permanent 
feature of the flow in the numerical results—and currently no reason is suggested for this 
discrepancy. 

As noted experimentally, the flow and heat transfer depends most strongly on the disc surface 
temperature distribution. For an unheated peripheral shroud, the number of radial arms, cyclonic 
and anticyclonic recirculation regions increases (from 1, to 2, to 3) as the location of the maximum 
disc surface temperature moves radially outward. When the shroud is also heated, there are 
many (> 4) radial arms which appear to exchange fluid with the boundary layer on the shroud. 

For surface temperature distribution B (investigated in some detail), the predicted 
relative-tangential and radial velocities are found to be an order of magnitude less than the bulk 
average velocity of the axial throughflow. The axial and circumferential variations of 
relative-tangential and radial velocity indicate a complex flow structure inside the cavity. 
Boundary layers form on the discs, and for a given radial location there are sectors where the 
flow moves radially inward and sectors where the flow is radially outward. In the centre of the 
cavity the flow can also be either radially inward or radially outward. Away from the axis of 
rotation the flow is virtually symmetrical about the mid-axial plane; close to the axis there is 
asymmetry due to the influence of recirculation adjacent to the downstream disc. 

There is also a strong effect of the disc surface temperature distribution on the local Nusselt 
numbers. As the location of the maximum disc temperature moves radially outward the 
circumferentially-averaged Nusselt numbers become less negative. There is also a reduction in 
the circumferential variation of Nu, because the flow structure itself tends to become more 
axisymmetric. There is reasonable agreement between correlated and predicted Nusselt numbers 
for a surface temperature distribution similar (but not identical) to that used in experimental 
work to obtain a correlation. The recirculation of fluid adjacent to the downstream disc causes 
some enhancement of the heat transfer towards the inner radius of this disc. 
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